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Abstract

The relationship between excess returns and the dividend price ratio is known

to be unstable. However, there is no consensus on the type of instability, i.e.

few or many breaks. Differences in parameter instability affect the long-term

investor in particular, as misspecification errors are exacerbated as the investment

horizon increases. Therefore, we investigate the consequences of different types

of break processes for a long-term investor. The break process is inferred with

a mixture innovation model using Bayesian methods. This allows us to estimate

the break risk and the uncertainty around it. The estimated parameters show

substantial instability, with an average break probability of 20.6%. Assuming

constant parameters can lead to losses of up to 16.3% in certainty equivalent return

for the long-term investor, even if the break probability is small in reality. The costs

of ignoring uncertainty regarding the instability are smaller, but non-negligible.
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1 Introduction

There is substantial evidence for instabilities or time-variation in the relationship between

stock returns and potential predictors, see e.g. Pesaran and Timmermann (1995); Rapach

and Wohar (2006); Paye and Timmermann (2006); Lettau and Van Nieuwerburgh (2008);

Ang and Bekaert (2007). Instabilities are a potential explanation for the lack of sustained

predictability (Rapach and Zhou, 2013). The time-variation could be due to changes in

economic conditions or learning by economic agents, among others. By accounting for

the time-variation, one can again find periods of predictability that can be exploited

(Farmer et al., 2023). This is important to investors, since their portfolio depends on

the expected risk and return on stocks. Suggested methods that allow for time-varying

parameters assume few breaks (Henkel et al., 2011; Pettenuzzo and Timmermann, 2011),

or breaks each period (Dangl and Halling, 2012; Johannes et al., 2014). But whether

there are few or many breaks implies different properties for returns that are relevant

for investors. Should they anticipate a few possibly large shocks, or will the relationship

change gradually over time and allow them time to adapt?

Therefore, in the first part of the paper, we aim to find out type of time-variation that

is supported by the data, few or many breaks. This is achieved by estimating a mixture

innovation (MI) model (McCulloch and Tsay, 1993; Giordani and Kohn, 2008), a flexible

type of state space models where parameters can change each period, but don’t have

to. The time-variation is governed by the break probability parameter π, our measure of

parameter instability. Based on monthly US data from 1946 to 2015, we find substantial

time-variation in the relationship between the dividend price ratio and stock returns. The

posterior mode of the break probability is only 2.6%, but the mean is 20.6%. It is hard

to clearly identify large breaks, and there is quite some uncertainty regarding the break

probability due to the low signal-to-noise ratio. These results are robust to changes in

the break probability prior.

In the second part of the paper, we investigate the economic consequences of

misspecifying the type of instability in the relationship between the dividend price ratio

and excess returns, motivated by Barberis (2000). This is achieved by interpreting the
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prior on the break probability as the investor’s views regarding the instability. Instability

in the relationship between predictors and the excess returns is arguably more important

to the long-term investor than for the short-term investor, as the risk of breaks is

exacerbated over the investment horizon. Even if the break probability is small, the

probability of a break occurring in the period of holding the portfolio can still be high.

For example, if the break probability is 5%, the break risk for the one period investor is

reasonably small. For an investor holding a portfolio for 120 periods, or ten years, the

expected number of breaks in this period is 6. Therefore, we economically evaluate the

different views for a long horizon investor with power utility preferences by computed the

loss in certainty equivalent return from assuming an incorrect type of time-variation.

We find large costs associated with ignoring a time-varying relationship between

the dividend price ratio and stock returns. For a buy-and-hold investor with power

utility and risk aversion of γ = 5, the loss can run up to 16.3% in annualized certainty

equivalent return at a 20 year investment horizon. In contrast, the costs from instability

misspecification are limited if some type of time-variation is included in the model. A

model with many breaks is slightly preferred, likely due to uncertainty in the number and

location of breaks. Seemingly in contrast to Johannes et al. (2014), it is more important to

take instability in the loadings into account, rather than in the variance. This difference

can be explained the fact that we focus on the longer horizon. Also, in line with Pástor

and Stambaugh (2012); Pettenuzzo and Timmermann (2011); Johannes et al. (2014),

the additional layer of break probability uncertainty implies that the predictive density

increases over the investment horizon. This seems in contrast with Carvalho et al. (2018),

but in their appendix they also find upward sloping predictive variances for monthly data.

This paper relates to the long literature on return predictability. Welch and

Goyal (2008) famously show that popular predictors of stock returns perform poorly

out-of-sample. One of the explanations for the poor performance is that the relationship

between predictors and the equity premium varies over time. Timmermann (2008) argues

that predictive content does exists occasionally. But when it appears, it is quickly

exploited by market participants, thus creating short-lived “pockets of predictability”
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(Farmer et al., 2023). Multiple authors explicitly model the time-variation. In doing so,

they choose either to assume few breaks or many breaks. On the one hand, Ang and

Bekaert (2002), Guidolin and Timmermann (2007) and Henkel et al. (2011) estimate a

Markov switching model with two to four recurring regimes. Their findings suggest that

the predictive power is countercyclical, it is stronger during recessions. Pettenuzzo and

Timmermann (2011) consider a change point model, where it is not possible to return to

a past regime. On the other hand, Dangl and Halling (2012), Johannes et al. (2014) and

Diris (2014) consider a time-varying parameter model where the parameter changes each

time period. This typically leads to smoother variations over time. We contribute to this

literature by explicitly estimating the type of instability, without assuming the number

of breaks ex ante.

Our research adds to the long-term investment literature (Campbell and Viceira,

2002), in particular on the effects of modeling choices and associated uncertainties on

portfolios. Kandel and Stambaugh (1996) and Barberis (2000) study the consequences

of parameter uncertainty, and Avramov (2002) and Cremers (2002) do this for model

uncertainty. Pettenuzzo and Timmermann (2011), Johannes et al. (2014) among others

show the impact of parameter instability. We contribute in assessing the impact of

uncertain parameter instability, where the type of time-variation is uncertain. Moreover,

we compare the economic loss not just with the static case, but also between different

types of time-variation.

The methodology is most closely related to Koop et al. (2009), who, in a monetary

policy application, estimate a MI model with a similar break process specification. They

share our motivation of trying to let the data speak on the parameter instability. We

apply it in a financial setting with low signal-to-noise ratio, and include persistence in

the time-varying parameters.

Finally, in spirit, the paper is related to Clark and Ravazzolo (2015), Bauwens

et al. (2015) and Pettenuzzo and Timmermann (2017) in comparing different types

of time-varying models instead of just comparing to a static model. These papers

statistically compare (mostly univariate) macroeconomic models. This work differs in
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that we economically evaluate the performance in a multivariate model for financial time

series, with a low signal-to-noise ratio.

The paper is structured as follows. Section 2 defines the mixture innovation model,

details the priors and estimation procedure. Section 3 briefly describes the data.

Section 4 presents the estimation results, followed by the economic evaluation in Section 5.

Section 6 is a sensitivity analysis on the break probability prior, and Section 7 concludes.

2 Methodology

In line with the literature on return predictability (Rapach and Zhou, 2013) and portfolio

choice (Brandt, 2010), the relationship between the excess log return rt and the predictor

zt is described by a restricted vector autoregressive (VAR) model,

rt = β1t + β2tzt−1 + ε1t, (1)

zt = β3t + β4tzt−1 + ε2t, (2)

for t = 1, . . . , T , with T the sample size, where εt = (ε1t, ε2t)
′ ∼ N(0,Ωt). The intercepts

and loadings βt = (β1t, . . . , β4t)
′ and covariance matrix Ωt are potentially time-varying.

Following Primiceri (2005), among others, the covariance matrix Ωt is decomposed as

AtΩtA
′
t = ΣtΣ

′
t, where At =

 1 0

αt 1

 is a lower triangular matrix with covariance term

αt, and Σt = diag(σ1t, σ2t) a diagonal matrix with the (structural) volatilities σ1t and

σ2t on the diagonal. This decomposition simplifies inference, because αt is not restricted

between zero and one. It also allows us to rewrite the model in (conditionally) Gaussian

state space form to easily draw the variance and covariance terms.

2.1 Modeling parameter instability

To describe the time-variation in the parameters, we employ a mixture innovation (MI)

model, introduced by McCulloch and Tsay (1993). It is a flexible conditionally Gaussian
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state space model, where each time-varying parameter θt is modeled as,

θt = θt−1 + κtηt, (3)

where ηt ∼ N(0, ση), such that the break size depends on the break process κt.

Equation (3) excludes a persistence parameter for illustrative purposes. We focus on

a binary break process, κt ∈ {0, 1}, which is i.i.d. with break probability Pr[κt = 1] = π.

To see how the process in Equation (3) works, consider what happens for different

values of the break process κt. If κt = 0, then θt = θt−1, so there is no break and the

parameter stays in the current regime. If κt = 1, then θt = θt−1 + ηt, there is a break

and we are in a new regime. This break process provides flexibility and differentiates it

from alternative models. The break probability π and break size ση define the type of

instability.

We use an MI model for our analysis because of its attractive properties. First and

most importantly, the break probability π represents the parameter instability – our

measure of interest. Moreover, it is intuitive to interpret, which facilitates prior elicitation.

Second, the MI model nests many types of time-variation, such as few (large) breaks or

many (small) breaks. As extreme cases, the constant parameter model when π → 0,

and the time-varying parameter (TVP-VAR) model (Cogley and Sargent, 2001, 2005;

Primiceri, 2005) when π → 1 are included. The MI model does not nest the classic

change point model (Chib, 1998), because the number of breaks is not fixed. But the

version with an unknown number of breaks (Koop and Potter, 2007) is approximated by

a small value for π. Hence, this provides a framework to easily compare these models for

the long-term investor.

Third, there is no need to select the type of time-variation, or the number of breaks,

ex ante. Estimating the break probability, we infer the type of instability supported by

the data and the posterior variance provides the uncertainty regarding this instability.

Fourth, independent break processes for different parameters can be specified. And

indeed, as we will explain below, the parameters in the mean, variance and covariance

are governed by different break processes.
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Fifth, inference is computationally efficient due to the algorithm of Gerlach et al.

(2000), which is applicable to any conditionally Gaussian state space model. In state

space terminology, Equations (1) and (2) are the observation or measurement equations

(Durbin and Koopman, 2012). The efficiency of Gerlach et al.’s (2000) algorithm comes

from drawing κt without conditioning on the states θt. Drawing the break process κt is

linear in the number of values the break process can take. It requires O(T2K) operations,

with T the sample size and K the number of binary break processes (Giordani and Kohn,

2008). In some cases can even be improved further (Giordani and Kohn, 2008; Fiorentini

et al., 2014). In contrast, a change point model with an unknown number of breaks

requires O(T 2) operations, with T > K (Koop and Potter, 2007).

2.2 Mixture innovation model

To adapt the model in Equations (1)–(2) to a MI model, observe that the parameters

can naturally be divided into three groups, that may be subject to different types of

time-variation: (i) intercepts and loadings, (ii) residual variances, and (iii) residual

covariance. To capture the grouping, we implement a mixture innovation model with

three independent binary break processes, one for each parameter type. Koop et al.

(2009) use a similar specification in a macroeconomic application.

The intercepts and loadings βt follow a mixture innovation process that share one

break process. To model persistence of βt, a modification to Equation (3) is required.

The state equation for the intercepts and loadings βt is

βt = µb + f(κbt,Φb)(βt−1 − µb) + κbtηt, (4)

for t = 2, . . . , T , where ηt = (η1t, . . . , η4t)
′ ∼ N(0,Qb) with break size matrix Qb, κbt is a

binary break process which is one if there is a break at time t and zero otherwise that is

i.i.d. with break probability Pr[κbt = 1] = πb, µb = (µb,1, . . . , µb,4)
′ is a vector of long run
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means, and f(κbt,Φb) is an autoregressive (AR) function,

f(κbt,Φb) =


Ink

if κbt = 0

Φb if κbt = 1,

(5)

where Ink
is the nk × nk identity matrix, with nk = 4 the parameter vector length,

and Φb = diag(ϕb,1, . . . , ϕb,4) a diagonal matrix with autoregressive parameters. We

refrain from estimating the off-diagonal elements, to limit the number of parameters.

The covariance Qb can still be a full matrix.

The outcome of the function in Equation (5) is either the identity matrix if there is no

break, or a diagonal matrix with autoregressive parameters if there is a break at time t.

Hence, if there is no break we have the same value as in the previous period, but if there

is a break, we have an autoregressive process. The autoregressive MI (ARMI) process

in Equation (4) nests the AR process as a special case, if πb = 1, and the MI process in

Equation (3) if Φb = Ink
. In case Φb is diagonal, the process is stationary if |ϕi| < 1, for

all i = 1, . . . , nk, see Appendix A.

The autoregressive function is included to model the parameters’ persistence. Many

applications of the MI model (or TVP model) assume a random walk by setting

f(κbt,Φb) = I, to reduce the number of parameters, see e.g. Primiceri (2005), Koop

et al. (2009) or Groen et al. (2013). In that case though, the parameter variance and

hence also the predictive density’s variance grows linearly with the forecast horizon and is

unbounded in the limit. This is undesirable in our setting, because the long-term investor

is concerned with the return density many periods into the future. Therefore, the prior

on Φ excludes the random walk and explosive processes, see Appendix Section B.

The state equations for the (log) variances σ2
t = (σ2

1t, σ
2
2t)

′ and the covariance term αt

are

logσ2
t = µs + f(κst,Φs)(logσ

2
t−1 − µs) + κstζt, (6)

αt = µa + f(κat, ϕa)(αt−1 − µa) + κatξt, (7)

8



for t = 2, . . . , T , where ζt = (ζ1t, ζ2t)
′ ∼ N(0,Qs) and ξt ∼ N(0, q2a) independent from

εt, ηt and each other, κst and κat are binary break processes that are i.i.d. with break

probabilities Pr[κst = 1] = πs and Pr[κat = 1] = πa, µs = (µs,1, µs,2)
′ and µa are

the long run means, and f(·, ·) the autoregressive function as defined in Equation (5),

with Φs = diag(ϕs,1, ϕs,2) and ϕa the autoregressive parameters. The variance terms are

specified in logs to ensure positivity (Kim et al., 1998).

The break processes κbt, κst and κat are independent and allowed to, but not restricted

to, break at different points in time. It can be extended to allow for dependence between

the breaks, or to allow each parameter to have its own break process. We refrain from

this for a few reasons. First, the coefficients βt parameters are quite strongly correlated,

so it seems reasonable to assume that they share the same break process. Second, the

model likely benefits from some structure given the low signal-to-noise ratio of the data.

It therefore doesn’t seem to be worth the additional computational costs. This setup

does capture potential differences in time-variation between the first and second moment,

which allows to specify relevant alternatives such as a model with constant predictability

but with stochastic volatility.

2.3 Priors

We employ Bayesian methodology to estimate the MI model in Equations (1)–(2) and

Equations (4)–(7). This is a natural way to include parameter uncertainty (Barberis,

2000). Moreover, it allows us to assess the degree of uncertainty on the break probability.

Given the Bayesian methodology, we need to specify prior distributions for the static

parameters and initial conditions for the state equations. The priors are mostly standard

conjugate empirically Bayesian priors, based on Primiceri (2005) and Koop et al. (2009).

The location and scaling are based on ordinary least squares estimates of the restricted

VAR in Equations (1)–(2) using the first ten years of data, prior to the estimation sample.

The priors regarding the initial values of the state variables are fairly informative. The

priors are less informative for the long run mean and break probability. The full prior

specification is in Appendix B, we focus here on the parameter of interest.
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The prior for the break probability πk is a beta distribution,

πk ∼ Beta(ak, bk), (8)

for k ∈ {b, s, a}. The hyperparameters ak and bk reflect the investor’s views on the

presence of breaks, or lack thereof.

For the intercepts and loadings, we set the hyperparameters ak and bk such that the

prior’s expectation is between a few breaks (about one break every ten years) and many

breaks (about one break per year). In particular, we set ab = 1 and bb = 59, which

implies an average duration of 60 months between breaks, and a fairly weak prior. The

hyperparameters can be thought of as adding a+ b hypothetical observations: a ones and

b zeros, i.e. a breaks. If we define the prior strength as (a + b)/T , with T the sample

size, the prior strength is 7.1%. For comparison, Ravazzolo et al. (2008) and Groen et al.

(2013) employ similar priors with prior strengths of 7.4% and 5.2%, respectively.

For the variances and covariance’s break processes, we set as = bs = aa = ba = 1.

This is an uninformative prior, but effectively puts most probability mass at the many

breaks case to favor stochastic volatility.

2.4 Inference

Inference involves a Gibbs sampler. The algorithm mostly follows that of Koop et al.

(2009), which is based on Primiceri (2005) with the addition of drawing the break

processes κt and probabilities π. We add a step to draw the autoregressive parameters

Φb, Φs and ϕa.

The algorithm works as follows. For each of the state variables, βt, σt, and αt, we

rewrite the VAR such that we can apply methods for (conditionally) linear Gaussian

state space models. Then, we first draw the break process κk,t using the algorithm by

Gerlach et al. (2000). Next, we draw the latent variable using the simulation smoother of

Durbin and Koopman (2002). After drawing the time-varying parameters, we draw the

static parameters (πk, Qk and Φk, for k ∈ {b, s, a}) from their full conditional posterior
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distributions. For a detailed description, see Appendix C.

The sampler is iterated until we have 10,000 retained draws, after removing a burn-in

sample of 2,000 draws. Increasing the number of draws does not affect results. See also

a convergence analysis in Appendix D.

3 Data

We use the monthly S&P 500 index return and the one-month T-bill rate as risk-free rate

to construct the excess log return. These are taken from the extended Welch and Goyal

(2008) data set, available on Amit Goyal’s website: http://www.hec.unil.ch/agoyal/.

The sample consists of monthly observations from January 1936 to December 2021. It is

split into two parts. The first ten years, January 1936 to December 1945, are used for

prior calibration. The second part is the estimation sample of 912 months.

As predictor, we use the (log) dividend price ratio, defined as the ratio of the sum of the

dividends over the last 12 months to the current stock price. It is one of the most popular

predictors in the literature, has shown to hold predictive power (Campbell and Shiller,

1988), and has been used in most studies focusing on parameter instability. Summary

statistics and a time series plot are in Appendix E. The time series suggests a level shift

in the 1990s for the dividend price ratio (cf. Lettau and Van Nieuwerburgh, 2008). This

break could disrupt the relationship with the equity premium, which the MI model can

capture by allowing for instability in the intercepts and loadings in Equations (1)–(2).

4 Estimation results

4.1 Few versus many breaks

To assess the impact of different break probabilities, we first estimate the mixture

innovation model with a known break probability. That is, we assume various values for a

fixed break probability πb, from no to few to many breaks, πb ∈ {0, 1/600, 1/120, 1/60, 1}.

This includes the extreme cases of a static, i.e. no breaks (πb = 0), and a TVP-VAR
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(πb = 1) model. The few breaks cases are motivated by previous studies: πb = 1/120 (one

break expected every 10 years) approximates the 8 to 10 breaks estimated by Pettenuzzo

and Timmermann (2011), and πb = 1/600 (one break expected every 50 years) is in line

with the one to two breaks found by Lettau and Van Nieuwerburgh (2008). Fixing the

break probability at πb = 1/60 (one break expected every 5 years) is an intermediate case

between the few breaks and the many breaks. The break probability for the variances

and covariance term is set at πs = πa = 1, to capture the volatility clustering. Only in

the case of πb = 0, the model is fully static, ignoring parameter instability, so πk = 0, for

k ∈ {b, s, a}.

The posterior estimates of the time-varying parameters in Figures 1 and 2 are in line

with previous research. First, Figure 1a confirms that the weak but positive predictive

power of the dividend price ratio has decreased from the 1970s, and in particular small

in the 1990s (see e.g. Ang and Bekaert, 2007). Second, the static model estimates

the predictability coefficient in Figure 1a to be smaller compared to models that do

allow for time-varying parameters. The conditional level of predictive power is probably

underestimated by the static model, as it is a smoothed estimate over a sample with

periods where predictive power fluctuates. Including the periods without predictive power

shrink the estimate downwards. Third, the estimates illustrate why the dividend price

ratio is often used in long-term investing literature. The high persistence (see Figure 1b),

combined with positive predictability coefficient in Figure 1a and strong negative residual

correlation in Figure 2b implies strong mean reversion, making stocks safer in the long run

and ensuring a sizable hedge term. Fourth, Figure 2a shows that volatility clustering is

captured by all models, outside the static model. We recognize periods of high volatility,

such as the Oil Crisis in the 70s, Black Monday on October 1987, the financial crisis in

2008, and the recent COVID-19 period.

Comparing across the break probabilities, the results in Figure 1 are in line with the

interpretation of πb. As the break probability increases, the posterior estimate displays

more instability. The TVP-VAR’s estimate is much more volatile than for any of the

other models, and may be fitting noise rather than signal. The estimates for the other
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types of time-variation are largely similar to each other. If we expect one or two breaks

(πb = 1/600), the intercepts and loadings are quite stable. Interestingly, Figure 1b

provides some evidence of a break in the dividend price ratio at the end of the 1990s

or start of 2000s, conform Lettau and Van Nieuwerburgh (2008). The posterior mean is

quite smooth when π = 1/120 and π = 1/60, indicating uncertainty regarding the break

locations.

Figure 1: Posterior mean of intercepts and loadings under known π

(a) Coefficient of dpt−1 on rt
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(b) Coefficient of dpt−1 on dpt
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The figures present the posterior mean of the time-varying loadings, β2t and β4t, from the
mixture innovation (MI) model in Equations (1)–(2) with the time-varying parameters described
by Equations (4)–(7), with break probability for intercepts and loadings fixed at πb ∈
{0, 1/600, 1/120, 1/60, 1}. The break probability for the variances and the covariance term is fixed at
πs = πa = 1 for all models, except for the static case (πb = 0), where πs = πa = 0. TVP-VAR is the
model with πb = πs = πa = 1. See Section 2.3 for the prior specifications.

To illustrate that the different break probabilities imply different statistical properties

for the returns, Figures 3a–3b show individual draws for the MI model when π = 120

and the TVP-VAR model. Draws from the TVP-VAR model are very noisy, with a break

each period. In contrast, the draws under a small break probability exhibit large periods

of no change, with relatively large breaks. Some draws display noisy periods near the end

of the 1990s, perhaps because of uncertainty regarding a break around that time. These

draws are representative of the individual draws that feed into the predictive density.

Their large differences motivate us to assess the consequences in terms of asset allocation

in Section 5.
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Figure 2: Posterior mean of residual variance and correlation under known π

(a) Standard deviation of rt residuals
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(b) Residual correlation
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The figures present the posterior mean of the residual variance of rt, σ1t, and correlation
from the mixture innovation (MI) model in Equations (1)–(2) with the time-varying parameters
described by Equations (4)–(7), with break probability for intercepts and loadings fixed at πb ∈
{0, 1/600, 1/120, 1/60, 1}. The break probability for the variances and the covariance term is fixed at
πs = πa = 1 for all models, except for the static case (πb = 0), where πs = πa = 0. TVP-VAR is the
model with πb = πs = πa = 1. See Section 2.3 for the prior specifications.

Figure 3: Three posterior draws of predictability coefficient
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The figures present three random posterior draws of β2t, the coefficient of dpt−1 on rt, for (a) the mixture
innovation model, with break probability fixed at πb = 1/120, (b) the TVP-VAR model, and (c) the MI
model with unknown break probability. See Section 2.3 for the prior specification.

4.2 Estimating the parameter instability

The break probability is unknown in practice, emphasized by the lack of consensus in the

literature. Therefore, we specify the prior for π as in Section 2.3, and let the data speak

about the type of instability, and the uncertainty around it.

Figure 4 presents the posterior of the break probability. Most probability mass is

near πb = 0. The mode is at 2.6%, smaller than 5%. The posterior mean of the break

probability of the coefficients’ break process is 20.6%, which implies an expected duration

between breaks of about 5 months. The expected prior break probability is 1.7%, so the

data suggests a fairly large number of breaks. At the same time, the density is wide,
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with a standard deviation of 21.1%. It is substantially larger than the prior standard

deviation of 1.6%. This indicates quite some uncertainty regarding the break probability.

It is good to keep in mind that due to the parameterization of the MI model, there is

relatively much support of π associated with a large number of breaks. Even in the prior

with expected break probability πb = 1/600 there is a non-negligible 2.4% probability

that πb > 1/60, i.e. that there are is more than one break every five years. This perhaps

makes it easier for the posterior to be pushed to the many breaks case. In contrast,

with a change point model it would be easier to allocate zero probability mass to a large

number of breaks. The change point model does not yield a direct measure of instability

though, nor with a coherent framework to compare different types of time-variation. Also,

computational issues arise when estimating a change point model with many breaks.

Figure 4: Posterior of break probability
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The figure presents the posterior densities of the break probabilities from the mixture innovation model
in Equations (1)–(2) with the time-varying parameters described by Equations (4)–(7), where the break
probability is assumed to be unknown. The hyperparameters for the break probability of intercepts and
loadings set at ab = 1 and bb = 59, and for the break probability of the variances and the covariance
term set at as = bs = aa = ba = 1. See Appendix B for the other prior specifications.

There is substantial time-variation in the loadings according to the MI model, more

than implied by the few breaks case (πb = 1/120 or πb = 1/600), see Figure 1. On the

other hand, it is more stable than in the TVP-VAR model. The pattern of β2t is similar
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to the other MI models, which is mildly countercyclical. E.g. Dangl and Halling (2012)

also find a countercyclical predictive relationship. The correlation between the posterior

mean and the NBER recession dummy is 14.1% for the full sample, and increases to

21.8% in the period 1959−2021. There is also a sizable correlation of 53.6% with the

National Financial Conditions Index (NFCI), for the period when the NFCI is available,

from 1971.

Although the posterior mean seems like a smoother version of the TVP-VAR model’s,

the individual draws in Figure 3c highlight the difference between the models. Some

draws resemble those of the TVP-VAR model, whereas other draws display periods of

stability, in line with draws from a model with a small break probability. The variety

between the draws is a reflection of the wide posterior break probability distribution in

Figure 4. The combination of only few large breaks and a wide posterior distribution for

the break probability suggests that it is hard to identify the break probability with high

certainty, probably due to the low signal-to-noise ratio. This highlights the difficulty in

predicting stock returns.

The variance for the MI model with unknown break probability in Figure 6 is

essentially the same as for the TVP-VAR model and for the MI model with fixed break

probability. The MI model confirms the presence of heteroskedasticity, as the posterior

of the break probability in Figure 4 strongly suggests stochastic volatility rather than a

few regime switches. Johannes et al. (2014) find that including stochastic volatility is

needed to improve the predictive ability.

4.3 In-sample fit

We compare the fit of the models using the Watanabe Information Criterion (WAIC,

Watanabe, 2010), a Bayesian measure of fit that penalizes the number of parameters.

The estimated effective number of parameters varies depending on the time-variation in

the model. It is computed as the variance of the observation level loglikelihood over

the posterior draws, summed over all observations. This is known as WAIC type 2,

which is quite stable and has the attractive property of being related to leave-one-out
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Figure 5: Posterior mean of intercepts and loadings under unknown π
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(b) Coefficient of dpt−1 on dpt
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The figures present the posterior mean of the time-varying loadings, β2t and β4t, from the
mixture innovation (MI) model in Equations (1)–(2) with the time-varying parameters described by
Equations (4)–(7). If πb is assumed unknown (solid blue line), the hyperparameters for the break
probability of intercepts and loadings set at ab = 1 and bb = 59, and for the break probability of
the variances and the covariance term set at as = bs = aa = ba = 1. If the break probability is assumed
known (orange dashed line), it is fixed at the prior mean, such that πb = 1/60 and πs = πa = 1.
TVP-VAR (dashed black line) is the model with πb = πs = πa = 1, and static (dashed-dotted gray line)
is the model where πb = πs = πa = 0. The blue shaded area is the 68% credible interval for the MI
model where πb is unknown. See Appendix B for the other prior specifications.

Figure 6: Posterior mean of residual variance and correlation under unknown π

(a) Standard deviation of rt residuals

1950 1960 1970 1980 1990 2000 2010 2020
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

MI (
b
 unknown)

TVP-VAR

Static

MI (
b
=1/60)

(b) Residual correlation
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The figures present the posterior mean of the residual variance of rt, σ1t, and correlation from the
mixture innovation (MI) model in Equations (1)–(2) with the time-varying parameters described by
Equations (4)–(7). If πb is assumed unknown (solid blue line), the hyperparameters for the break
probability of intercepts and loadings set at ab = 1 and bb = 59, and for the break probability of
the variances and the covariance term set at as = bs = aa = ba = 1. If the break probability is assumed
known (orange dashed line), it is fixed at the prior mean, such that πb = 1/60 and πs = πa = 1.
TVP-VAR (dashed black line) is the model with πb = πs = πa = 1, and static (dashed-dotted gray line)
is the model where πb = πs = πa = 0. The blue shaded area is the 68% credible interval for the MI
model where πb is unknown. See Appendix B for the other prior specifications.

cross-validation (Gelman et al., 2014). A smaller WAIC value indicates a better model

fit.
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The WAIC values in Table 1 shows that the static model performs worst, followed by

the MI-b model. Both models restrict the parameters βt to be constant. They differ in

that MI-b includes time-varying volatility. The TVP-VAR model provides the best fit.

The MI model where the break probability π is estimated is a close second. Somewhat

surprising, the estimated effective number of parameters is larger than for the TVP-VAR

model. This may be due to the difference in break probability over the draws. Thus, the

WAIC values provide in-sample evidence for parameter instability. They point towards

a more flexible model with many breaks as a more accurate description of the data, even

when taking into account the additional parameters needed to estimate.

As a way to assess the model fit for the volatility, we compare the estimated variance

with the realized variance (RV). The monthly RV is computed as the sum of the squared

daily returns, given by the CRSP value weighted index return, incl. dividends, from 1954

to 2021. The variances are compared in logs.The mean squared error (MSE) in the last

column of Table 1 confirms that a more flexible model provides a better fit. The static

model performs worst with an MSE of 1.13, while it ranges from 0.68 (TVP-VAR) to

0.75 (MI-b) for models that do allow for time-varying volatility. For reference, the MSE

of an AR model for the log realized variance is 0.40. The difference is that this simple

AR model uses the realized measure as input, while the MI models only use monthly

data. As Figure 7 shows that the estimate from the MI model slightly overestimates the

RV, especially in the first half of the sample. However, this is in line with a moving

average of the squared monthly returns. So the deviation from RV indeed results from

using monthly data.

Overall, the results show the importance of allowing for time-variation in both the

mean and the variance. That the TVP-VAR model is preferred suggests that either there

are indeed many breaks in the relationship between the dividend price ratio and stock

returns, or it is a good way to approximate few breaks for which the location is hard to

pin down.
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Table 1: In-sample fit

Model Loglikelihood (mean) m̂ WAIC MSE (log RV)

MI (π unknown) 4,765.7 72.6 −9,450.9 0.718
TVP-VAR 4,783.7 52.7 −9,508.2 0.679
MI (πb = 1/60) 4,739.8 67.5 −9,405.1 0.729
MI (πb = 1/120) 4,728.8 67.0 −9,383.8 0.741
MI (πb = 1/600) 4,709.1 64.7 −9,346.4 0.747
MI-b (πb = 0) 4,702.4 55.1 −9,343.7 0.751
Static 4,682.9 5.4 −9,360.4 1.133

The table presents the loglikelihood mean over the posterior draws, the effective number of parameters
(m̂), and the Watanabe-Akaike Information Criterion (WAIC) for the MI model presented in Section 2
with different prior break probabilities. MI is the mixture innovation model, TVP-VAR is the
time-varying parameter VAR model, static is no time-variation and the addition of -b means that the
intercepts and loadings are restricted to be constant. The last column presents the mean squared error
for the monthly log realized volatility over the period 1955–2021.

Figure 7: Log realized variance fit
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The figure presents (in logs) the monthly realized variance (RV), the two-sided 1-year moving average of
monthly squared returns (MA), and posterior mean and 90% credible interval of the excess return variance
from the mixture innovation model (MI) in Equations (1)–(2) with the time-varying parameters described
by Equations (4)–(7), where the break probability is assumed to be unknown. The hyperparameters for
the break probability of intercepts and loadings set at ab = 1 and bb = 59, and for the break probability
of the variances and the covariance term set at as = bs = aa = ba = 1. See Appendix B for the other
prior specifications.

5 Economic evaluation

In the spirit of Barberis (2000), we analyze the influence of the break probability on

the portfolio allocation of a long-term investor. This provides insight into whether the

statistical differences in the previous sections translate to economic differences in terms

of portfolio risk and returns.
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5.1 Asset allocation problem

We consider a power utility (constant relative risk aversion) maximizing buy-and-hold

investor with an investment horizon h up to 240 months, or 20 years. So the investor

allocates her wealth now, and receives the return at the end of the investment period,

without rebalancing. She faces the following problem,

max
w

U(WT+h) = max
w

W 1−γ
T+h − 1

1− γ
, (9)

with risk aversion γ > 0 and wealth at time T + h is defined as

WT+h = WT

(
w exp

(
hrf +

T+h∑
t=T+1

rt

)
+ (1− w) exp(hrf )

)
, (10)

where w is the fraction of wealth allocated to stocks and rf is the log risk-free rate, set

equal to the one-month T-bill rate historical average. Wealth at time T is normalized to

one. The investor optimizes utility by changing the allocation to stocks w, with short

selling constraints, such that 0 ≤ w ≤ 0.99. The weight w = 1 is excluded to avoid

unbounded utility, see e.g. Barberis (2000).

To solve the optimization problem in Equation (9), the investor needs to specify the

distribution of excess stock returns h periods ahead. We use draws from the posterior

to sample from the predictive density of stock returns. Hence, the predictive density

incorporates estimation uncertainty, parameter instability, and uncertainty regarding the

risk of breaks. Excess returns are simulated up to the investment horizon h, conditional

on the model, a time period, and the posterior draws from the m-th MCMC iteration.

This is repeated ten times per posterior draw, to increase precision on the moments of

the predictive density (Rao-Blackwellization). Using these draws, the expected utility is

computed for a given weight w. The optimal weight is then found by a one dimensional

adaptive grid search over w, where the step size decreases to a minimum of 10−5.

The maximum horizon h is 240 months, or 20 years, so we want to make sure that

the predictive density is stationary. Otherwise, the variance is unbouded and will lead
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to extreme draws. Arguably, it would be preferred to impose this in the estimation

procedure, but this would make the estimation procedure substantially more difficult,

since it needs to be imposed every time period. Then, the model cannot be easily

rewritten into Gaussian state space form and the methods we employ are no longer valid.

An alternative is to perform a Metropolis-Hastings step, introducing autocorrelation

to the MCMC chain, thereby reducing the sampler’s efficiency. Instead, we exclude

non-stationary draws when drawing from the predictive density. This implies imposing

that β4t < 1 and applying the same restriction to the autoregressive parameters on the

diagonal of Φ. This latter restriction is already imposed in estimation, see Section B.

The number of retained draws is 90,460 out of a potential 100,000 for the MI model with

unknown break probability πb.

Conclusions are similar for different condition periods. For brevity, we only present

results for conditioning on November 1987. This is one month after Black Monday, a

period with relatively high conditional variance, to illustrate high possible differences in

time-varying volatility.

The evaluation is in-sample for two reasons. First and foremost, evaluating long-term

portfolios out-of-sample is difficult because the sample consists of few non-overlapping

periods. This is the reason that most work on long-term allocations is in-sample.

For an exception, see e.g. Diris et al. (2014). Second, an out-of-sample analysis

is time-consuming. It requires re-estimating the model each period, because we use

smoothed estimates. In addition, the predictive density would have to be redrawn each

time as well. Johannes et al. (2014) do evaluate out-of-sample. They use filtered estimates

and focus on shorter horizons though.

As a measure of the portfolio performance, we use the certainty equivalent return

(CER). It is the return that makes the investor indifferent between holding a riskless

asset with that return and investing in the (risky) portfolio. In other words, CER is the

return the investor is willing to pay to hold the portfolio instead of being fully invested in

the risk free asset. So it is the rate that yields the same utility as the portfolio of model i

at investment horizon h, computed as CERih = u−1(E[Uih]) = (E[Uih](1− γ) + 1)
1

1−γ − 1,
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with utility Uih. The CER are annualized assuming continuous compounding.

We are interested in comparing the performance of each model, under various types of

parameter stability. Therefore, one model is assumed to be the data generating process

(DGP) that generates the predictive density and the CER is computed under that DGP

for each of the models with the weights from that particular model. This is similar to

the analysis of Ang and Bekaert (2002) and Pettenuzzo and Timmermann (2011), among

others. The model of the DGP will always have the highest CER, because the weights are

optimized for those draws. Hence, the exercise is repeated assuming each of the models

as DGP. As measure for misspecifying the break process, define the loss compared to the

optimal CER (i.e. correctly specified time-variation) as CELijh = CERjjh − CERijh, the

loss for model i at horizon h with model j as the DGP. Performance fees (Fleming et al.,

2001) instead of CEL yield qualitatively the same results.

5.2 Term structure of risk

Figure 8 shows the term structure of risk for the MI (with unknown break probability and

fixed probability at the expected value of the prior), TVP-VAR, a static VAR model, and

MI-b, a MI model where the intercepts and loadings are restricted to be constant. The

term structure of risk is the per period standard deviation, so they can be compared across

investment horizons. The relatively high short-run variance for the MI and TVP-VAR

models reflects the high conditional variance for the starting period. In the medium run,

the per period standard deviation decreases due to predictability and mean reversion.

This effect is strongest for MI-b and the constant VAR due to stable intercepts and

loadings. It indicates that even though MI-b includes time-varying volatility, the effect

at the long horizons is mostly driven by the (in)stability of the mean parameters.

In the long run, stocks are riskiest in the MI model. Likely this is because of the

additional uncertainty regarding the break probability. The MI model with unknown

break probability has a larger variance than the MI model with known break probability.

At a 20 years horizon, the variance is 0.25 for the model with fixed πb = 1/60 and 0.37 for

the model with unknown break probability. This alone does not explain the difference, as
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the MI model with known break probability also has higher variance than the TVP-VAR

(0.14 at 20 years). There could be stronger mean-reversion in the time-varying parameters

for the TVP-VAR model than the MI model. As shown in Figure 3c, there are some

posterior draws where the loadings are constant for longer periods. If the parameters are

in an extreme regime, and does not revert back to its mean, it can inflate the long run

variance.

Another possible reason for the difference between the TVP-VAR model and the MI

model comes from imposing stationarity and is a bit subtle. The high correlation between

the coefficients β2t and β4t implies that by truncating the AR coefficient for the dividend

price ratio, β4t, we ‘softly truncate’ the coefficient of the dividend price ratio on the excess

returns, β2t, hence increasing the average predictability coefficient, see Figure 9. If the

break probability is high, the predictability dip in the variance is larger, because each

period with a break nudges the predictability upwards. This is in favor of the TVP-VAR

model and may contribute to the smaller predictive variance for the TVP-VAR model

compared to the MI model.

5.3 Weights and certainty equivalent return

Figure 10 presents the fraction of wealth allocated to stocks from optimizing the asset

allocation problem in Equation (9) with risk aversion of γ = 5. Results are qualitatively

similar for a risk aversion of 2 and 8. The allocation can be extreme, with the allocations

based on the constant VAR and MI-b hitting boundary solutions. When using the

constant VAR model to optimize the allocation problem, the allocation is at least 70%

and is at the maximum 99% for horizons of 3 years or more. This is a result of the

relatively small estimated risk of the returns for those models. When comparing the MI

and TVP-VAR, MI has a smaller allocation than TVP-VAR at the horizons longer than

4 years. The weight to the risky asset is 28.3% (MI) and 30.2% (TVP-VAR) at a 20 years

horizon. This is due to the large risk at the longer horizon according to the MI model.

The weights show that when allowing for unstable parameters, stocks are less

interesting for the long-term investor than when using a static model. However, it does
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Figure 8: Term structure of risk
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The figure presents the per period standard deviation of the predictive density of stock returns times 12,
for an investment horizon up to h = 240 months:

√
12× V art+h(rt)/h. Results are conditional on time

period 1987M11.

not tell how much we would lose if we were to assume an incorrect instability of the

relationship between the dividend price ratio and excess stock returns. Therefore, we

consider the certainty equivalent loss in Table 2. The CERs are annualized and therefore

comparable across horizons.

The CELs provide some interesting results. First, assuming constant intercepts and

loadings can be costly, especially at the longer horizons. At the short horizon, the losses

are limited, but increase as the horizon becomes 5 year or more, up to 16.3% in CER

at the 20 year horizon, see panel D in Table 2. Second, vice versa, the MI models and

TVP-VAR show a large loss in CER when the DGP has a constant mean. This is because

the per period standard deviation is relatively small in the DGP in that case and the

investor misses these extra profits. However, it is not too bad for the investor because

the absolute CER is still positive. Third, it is important to take parameter stability into

account, but the difference between the MI model and the TVP-VAR is limited: 0.02%

or 0.04% at the 20 year horizon. Fourth, the impact of time-varying volatility is clear at
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Figure 9: Effect of imposing stationarity
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The figures present a 1,000 draws from the predictive density for the intercepts and loadings. The blue
circles are from the multivariate normal distribution given by the posterior mean and variance for µ1

(from the static model) and Q1 (from the TVP-VAR model). The orange crosses are in the subset where
|β4,T+1| < 1. The dashed blue line is at the height of the sample mean of β2,T+1 for the full sample, and
the orange solid line is at the height of the sample mean of β2,T+1 for the subset where |β4,T+1| < 1.

Figure 10: Allocation to stocks
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The figure presents the fraction of wealth allocated to stocks for a buy-and-hold investor with power
utility with risk aversion parameter γ is 5. Results are conditional on time period 1987M11.
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the short horizon. The CEL in panel A in Table 2 for the static model is much larger

than for any other model, even the MI-b. At the long horizon though, instability in the

mean dominates, as the allocation and hence CERs for the MI-b and static model are

comparable. Fifth, from assuming a DGP with instability uncertainty and considering

the CEL for the mixture innovation models without instability uncertainty, the utility

cost of ignoring instability uncertainty is only about 0.1% in annualized returns.

Finally, from the bottom row in Table 2, we can identify the model choice that is most

robust to the time-variation misspecification, consistent with a min-max utility investor

(Hansen and Sargent, 2001). It is the model that maximizes the minimum CER over the

various DGPs, where the consideration set is defined by the mixture innovation model

we specified, with the break probability prior as choice set. Assuming a TVP-VAR or MI

model with πb = 1/60 is most beneficial in the long run for the long-term investor with

a minimum CER of 4.52% in annualized returns. It’s reasonable to allow for any type

of instability, with a preference for a high break probability. This might be because the

many breaks models allow for more flexibility and don’t have to be exact about the break

location. Perhaps most important for the long-term investor is the amount of instability

and this is well described by these models – also considering their good fit (Section 4.3).

5.4 Comparison to literature

There is a discussion in the literature on whether the predictive variance of stocks

increases or decreases with the horizon, see e.g. Pástor and Stambaugh (2012); Carvalho

et al. (2018). Traditionally, stocks are believed to be safer in the long run due to mean

reversion. However, Pástor and Stambaugh (2012) show that stocks are more volatile in

the long run when predictors are assumed to be imperfect proxies of the expected return.

Similarly, Pettenuzzo and Timmermann (2011) and Johannes et al. (2014) find that the

risk is larger in the long run when taking into account parameter instability. Given that

the MI model includes another layer of uncertainty, break risk, it is not surprising that

the per period variance increases over the horizon in Figure 8.

In contrast, Carvalho et al. (2018) show in the imperfect predictor setting and with
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Table 2: Difference in certainty equivalent return

CEL

TVP-VAR MI MI MI MI MI-b Static
DGP CERDGP πb unknown πb = 1/60 πb = 1/120 πb = 1/600 πb = 0

Panel A: h = 1

TVP-VAR 4.85 0.25 0.41 0.46 0.59 0.67 4.94
MI (πb unknown) 6.07 0.25 0.02 0.03 0.07 0.10 2.96
MI (πb = 1/60) 6.42 0.39 0.02 0.00 0.02 0.03 2.44
MI (πb = 1/120) 6.57 0.45 0.03 0.00 0.01 0.02 2.36
MI (πb = 1/600) 6.82 0.57 0.07 0.02 0.01 0.00 2.06
MI-b (πb = 0) 6.97 0.63 0.10 0.03 0.02 0.00 1.93
Static 8.10 2.05 1.24 1.05 1.00 0.88 0.83

Panel B: h = 12

TVP-VAR 5.72 0.07 0.17 0.18 0.20 0.28 2.40
MI (πb unknown) 6.48 0.07 0.02 0.02 0.03 0.07 1.61
MI (πb = 1/60) 6.81 0.16 0.02 0.00 0.00 0.01 1.21
MI (πb = 1/120) 6.90 0.17 0.02 0.00 0.00 0.01 1.21
MI (πb = 1/600) 7.19 0.20 0.03 0.00 0.00 0.01 1.26
MI-b (πb = 0) 7.51 0.29 0.07 0.01 0.01 0.01 1.05
Static 8.06 1.17 0.79 0.62 0.61 0.58 0.50

Panel C: h = 60

TVP-VAR 6.53 0.04 0.05 0.04 0.01 0.03 0.82
MI (πb unknown) 7.01 0.07 0.37 0.33 0.17 0.28 9.89
MI (πb = 1/60) 7.48 0.05 0.17 0.00 0.01 0.00 0.30
MI (πb = 1/120) 7.59 0.05 0.17 0.00 0.01 0.00 0.53
MI (πb = 1/600) 7.93 0.02 0.14 0.03 0.02 0.01 20.97
MI-b (πb = 0) 8.40 0.04 0.19 0.00 0.00 0.01 0.75
Static 8.53 0.45 0.70 0.24 0.25 0.34 0.28

Panel D: h = 240

TVP-VAR 4.52 0.02 0.00 0.04 0.11 1.16 8.79
MI (πb unknown) 5.40 0.04 0.08 0.29 0.53 3.45 16.28
MI (πb = 1/60) 5.43 0.00 0.06 0.05 0.15 2.07 13.69
MI (πb = 1/120) 5.72 0.07 0.18 0.04 0.02 1.41 12.64
MI (πb = 1/600) 6.55 0.23 0.44 0.17 0.03 1.47 13.63
MI-b (πb = 0) 8.69 1.32 1.70 1.21 0.84 0.62 2.21
Static 9.31 2.29 2.69 2.17 1.77 1.51 0.51

min(CER) 4.52 4.50 4.52 4.47 4.41 1.96 −10.88

The table presents the annualized certainty equivalent loss (CEL), in percentages, the difference in
certainty equivalent return between the between assuming a model to choose portfolio weights (columns)
and the DGP (rows), and the CER for the DGP, for investment horizon h ∈ {1, 12, 60, 240} in months.
Panel D also presents the minimum CER at the 20 year horizon over the DGPs for each of the models.
All CERs are for a buy-and-hold investor with power utility and risk aversion of γ = 5. The conditioning
period is 1987M11. Results are based on up to 100,000 draws, excluding non-stationary draws.

“plausible priors” that the predictive variance can be smaller in the long run. They

argue that Johannes et al. (2014) overestimate the risk. To assess if this is true for the

MI model, we repeat their exercise by comparing draws from the predictive density to

the “unconditional average,” the sample average based on h period returns. We deviate
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from Carvalho et al. (2018) and compute the variances using Newey-West with h − 1

lags to account for overlapping periods. Figure 11 shows that the model average does

not track the sample average exactly, but it is well in the credible interval. So the model

describes the data reasonably well. This does not contradict Carvalho et al. (2018). In

their appendix, they also find that for monthly returns the predictive variance increases

over the horizon. For lower frequency data they do conclude that stocks are safer in the

long run.

Figure 11: Model implied and unconditional predictive variance

The figure presents draws (gray), mean (solid blue) and 90% credible interval (dashed blue) of the per
period standard deviation of the predictive density of stock returns times 12, for an investment horizon
up to h = 240 months:

√
12× V art+h(rt)/h, for the MI model with unknown break probability. Results

are conditional on time period 1987M11. The dash-dotted black line is the sample average, computed
from all h period returns, using Newey-West with h− 1 bandwidth.

6 Prior sensitivity analysis

To assess the sensitivity of the results to our prior choice, we re-estimate the MI

model, with different priors for the break probability πb, the parameter of interest. The

hyperparameters are chosen such that the prior strength is equal to that of the baseline

prior (ab = 1 and bb = 59), and matches the mean to each of the considered break

probabilities in Section 4.1. For example, to get an expected value of πb = 1/120, ab = 0.5
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and bb = 59.5. The different priors are plotted in Figure 12a.

The posterior of πb in Figure 12b shows some of the prior influence in that the

modes are ordered as expected. The mode is 0.3% for the very few breaks prior

(E[πb = 1/600]) to 6.5% for the many breaks prior (E[πb = 1/12]). The posterior is

wide for all different priors, and the probability of many breaks (π > 1/12) is substantial,

ranging from 40% (E[πb = 1/600]) to 57% (E[πb = 1/120]). This indicates considerable

uncertainty regarding the break probability. Figure 13 shows that the general pattern of

the time-varying parameters is quite robust to the prior values. The variance is the same

for all models, and the time-variation in β2t is of a similar magnitude.

Figure 12: Distribution of πb
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The figures present the prior and posterior density for the break probability of the intercepts and loadings
for mixture innovation models with prior expected values for the break probability equal to E[πb] ∈
{1/600, 1/120, 1/60, 1/12}, with hyperparameters ab + bb = 60. The hyperparameters for the break
probability of the variances and the covariance term are set at as = bs = aa = ba = 1.

More relevant is to assess the impact of the prior on the predictive variance and

allocation. The predictive variance in Figure 14a shows that it can vary a bit across

the different priors, ranging at the 20 years horizon from 0.21 (E[πb] = 1/12) to 0.39

(E[πb] = 1/120). However, Figure 14 shows that the allocation is very similar for all prior

specifications, which is also clear from the small losses in Table 3. The CEL in Table 3

ranges from 0 up to 36 basis points, so the costs of misspecifying the prior are limited.

In that sense, the results are robust to the prior specification.

The effect of instability uncertainty is consistent across different priors. The added
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Figure 13: Posterior mean of time-varying parameters for different priors of πb

(a) Coefficient of dpt−1 on rt
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(b) Standard deviation of rt residuals
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The figures present the posterior mean the predictability coefficient, β2t, and the residual standard
deviation of r, σ1t, from the mixture innovation model in Equations (1)–(2) with the time-varying
parameters described by Equations (4)–(7). If πb is assumed unknown, the priors are set such that
the expected value equal is to E[πb] ∈ {1/600, 1/120, 1/60, 1/12}, with hyperparameters ab + bb = 60.
The hyperparameters for the break probability of the variances and the covariance term set at as =
bs = aa = b3 = a. If the break probability is assumed known, it is fixed at the prior mean, such that
πb ∈ {1/600, 1/120, 1/60, 1/12} and πs = πa = 1. See Section 2.3 for the full prior specification.

uncertainty widens the predictive density (Figure 14a) and this extra risk translates to

a lower allocation to stocks (Figure 14b). The uncertainty accumulates over the horizon

as the differences are larger as the horizon increases. Utility costs of ignoring break

probability uncertainty for an investor with a 20 year horizon vary from 0.01% for a prior

at many breaks to 0.66% for lower break probabilities, see the last column in Table 3. So

these are limited, but can be non-negligible.

Table 3: CEL for different priors of πb

E[πb] = 1/12 E[πb] = 1/60 E[πb] = 1/120 E[πb] = 1/600 πb = E[πb]

E[πb] = 1/12 0.15 0.25 0.17 0.01
E[πb] = 1/60 0.21 0.02 0.00 0.08
E[πb] = 1/120 0.36 0.02 0.01 0.47
E[πb] = 1/600 0.28 0.00 0.01 0.66

The table presents the annualized certainty equivalent loss (CEL), in percentages, the difference in
certainty equivalent return between assuming a mixture innovation model to choose portfolio weights
(columns) and the DGP (rows), for an investment horizon of h = 240 months. The final column presents
the difference in CER from assuming a mixture innovation model with known break probability equal to
the prior expected value as DGP. All CERs are for a buy-and-hold investor with power utility and risk
aversion of γ = 5. The conditioning period is 1987M11.
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Figure 14: Asset allocation for different priors of πb

(a) Term structure of risk
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(b) Portfolio weights

0 50 100 150 200

Horizon (in months)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
llo

c
a

ti
o

n
 t

o
 s

to
c
k
s

b
 = 1/12

E[
b
] = 1/12

b
 = 1/60

E[
b
] = 1/60

b
 = 1/120

E[
b
] = 1/120

b
 = 1/600

E[
b
] = 1/600

The figures present (a) the per period standard deviation of the predictive density of stock returns times
12,

√
12× V art+h(rt)/h, and (b) the allocation to stocks for a buy-and-hold investor with power utility

with risk aversion parameter γ is 5, for an investment horizon up to h = 240 months. Results are
conditional on time period 1987M11.

7 Conclusion

We assess the economic costs of misspecifying the type of instability, few (large) or

many (small) breaks, in the predictive relationship between the dividend price ratio

and stock returns for a long-term investor. We estimate a mixture innovation model

with Bayesian estimation methodology to quantify the effect of uncertainty regarding

the break probability. The predictive relationship seems to be subject to many breaks

rather than few breaks. There is substantial uncertainty though, likely due to the low

signal-to-noise ratio. The uncertainty adds to the volatility in the predictive density and

hence lower allocation to stocks.

From a long-term investor’s perspective, the costs of ignoring parameter instability

are high, even if the true process is subject to a limited number of breaks. The costs

can run up to 16% in terms of annualized certainty equivalent return over a 20 year

horizon. Conditional on assuming instabilities, the costs of misspecifying the instability

are limited. Therefore, long-term investors should at least allow for the possibility of

parameter instability. Allowing for more breaks is preferred, which probably helps because

of the uncertainty on the number and location of breaks.
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Appendix A ARMI process properties

Define the autoregressive mixture innovation (ARMI) process Xt as

Xt = µ+ f(κt, ϕ)(Xt−1 − µ) + κtηt

= µ+
(
ϕκt + (1− κt)

)
(Xt−1 − µ) + κtηt,

with ηt ∼ N(0, σ2) and Pr[κt = 1] = π.

A.1 Stationarity conditions

First, we show that the process Xt is stationary if |ϕ| < 1. Without loss of generality, we

take µ = 0 for notation convenience. We rewrite Xt as a sum of the initial condition and

its innovations,

Xt = X0

t∏
s=1

(ϕκs + (1− κs)) +
t∑

s=1

(
t∏

j=s+1

(ϕκj + (1− κj))

)
κsηs

= X0

t∏
s=1

f(κs, ϕ) +
t∑

s=1

(
t∏

j=s+1

f(κj, ϕ)

)
κsηs.

This sum is non-explosive if |f(κt, ϕ)| < 1 and |[
∏t

j=s+1 f(κj, ϕ)]κs| < 1. This depends on

the break process κ. If we assume, without loss of generality, that a fraction π∗ periods

for which κs = 1 for 1 ≤ s ≤ t and a fraction π̃ periods for which κj = 1 for s+1 ≤ j ≤ t,

then

t∏
s=1

f(κs, ϕ) =
t∏

s=1

(ϕκs + (1− κs))

=

 ∏
1≤s≤t|κs=1

(ϕκs + (1− κs))

 ∏
1≤s≤t|κs=0

(ϕκs + (1− κs))


=

 ∏
1≤s≤t|κs=1

ϕ

 ∏
1≤s≤t|κs=0

1


= ϕπ∗t,
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and

(
t∏

j=s+1

f(κj, ϕ)

)
κs =

(
t∏

j=s+1

(ϕκj + (1− κj))

)
κs = ϕπ̃(t−s)κs.

Since 0 ≤ π∗ ≤ 1, it follows that |ϕπ∗t| < 1 and |ϕπ̃(t−s)κs| ≤ 1 if |ϕ| < 1. Strict inequality

holds for both, unless π̃ = 0. Then the first part becomes one and we are left with κs,

which is either zero or one. However, κsηs is not explosive if κs = 1, as it is only a single

normally distributed random variable, not a sum. Moreover, the realization of ηs will

then be discounted for future values Xj where j > s if |ϕ| < 1. This shows that the

ARMI process Xt is stationary if |ϕ| < 1.

A.2 Unconditional distribution

We show that the unconditional distribution of the ARMI process given by Equation (4),

under stationarity, i.e. |ϕ| < 1, and Pr[κt = 1] = π > 0, is the same as for a stationary

autoregressive process, i.e. if π = 1. This is equivalent to proving that the unconditional

distribution does not depend on the break probability π. We assume |ϕ| < 1, π > 0 and

independence between Xt−1 and κt.

The unconditional mean of Xt is

E[Xt] = E
[
µ+ κtϕ(Xt−1 − µ) + (1− κt)(Xt−1 − µ) + κtηt

]
= µ+ E

[
κtϕ(Xt−1 − µ)

]
+ E

[
(1− κt)(Xt−1 − µ)

]
E[Xt − µ] = E[κt]ϕE[Xt−1 − µ] + E[1− κt] E[Xt−1 − µ]

= πϕE[Xt − µ] + (1− π) E[Xt − µ](
1− πϕ− (1− π)

)
E[Xt − µ] = 0

E[Xt − µ] = 0

E[Xt] = µ.
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The unconditional variance of Xt is

var(Xt − µ) = var
(
µ+ κtϕ(Xt−1 − µ) + (1− κt)(Xt−1 − µ) + κtηt

)
= ϕ2 var

(
κt(Xt−1 − µ)

)
+ var

(
(1− κt)(Xt−1 − µ)

)
+ var(κtηt)

= ϕ2 E[κt] var(Xt−1 − µ) + E[1− κt] var(Xt−1 − µ) + E[κt] var(ηt)

= ϕ2π var(Xt − µ) + (1− π) var(Xt − µ) + πσ2(
1− ϕ2π − (1− π)

)
var(Xt − µ) = πσ2

(π − ϕ2π) var(Xt − µ) = πσ2

var(Xt − µ) =
πσ2

π − ϕ2π
=

σ2

1− ϕ2
.

Hence, the unconditional distribution of Xt is N
(
µ, σ2/(1− ϕ2)

)
and does not depend on

the break probability π.
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Appendix B Priors

We employ Bayesian methodology to estimate the MI model in Equations (1)–(2) and

Equations (4) and (7). This is a natural way to include parameter uncertainty, a relevant

risk for the long-term investor (Barberis, 2000). Moreover, it allows us to assess the

degree of uncertainty on the break probability. Given the Bayesian methodology, we

need to specify prior distributions for the static parameters and initial conditions for the

state equations. The priors are mostly standard conjugate empirically Bayesian priors,

based on Primiceri (2005) and Koop et al. (2009). The location and scaling are based on

ordinary least squares (OLS) estimates of the restricted VAR in Equations (1)–(2) using

the first ten years of data. This period is excluded from the estimation sample. We use

fairly informative priors regarding the initial values of the state variables, but less so for

the long run mean and break probability.

As prior for the long run means µ, we take a normal distribution,

µb ∼ N(β̂, 106 var(β̂)), (B.1)

µs ∼ N(l̂ogσ2, 106 var(l̂ogσ2)), (B.2)

µa ∼ N(α̂, 106 var(α̂)), (B.3)

where β̂ is the OLS estimator on the first ten years of data and var(β̂) its variance

covariance matrix. To ensure that the prior is uninformative, the variance is multiplied

by a large number, 106. We do not have OLS estimates for the structural log variances

logσ2 and covariance term α and their variances, so we follow Koop et al. (2009) and

draw a 1,000 times from an inverse Wishart distribution,

Ω∗ ∼ IW(Ω̂τ, τ), (B.4)

with Ω̂ the OLS estimate of the residual covariance matrix and degrees of freedom τ = 120

set to the number of time periods used to calibrate the prior. Note that the degrees of

freedom in an inverse Wishart distribution can indeed be interpreted as the number of
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observations to calibrate the location. For each draw of Ω∗, we use the decomposition

AtΩtA
′
t = ΣtΣ

′
t to obtain a draw of the structural log variances logσ2 and covariance

term α. The sample mean and variance of the draws are the estimates l̂ogσ2 and α̂ and

their variances var(l̂ogσ2) and var(α̂).

The off-diagonal elements of Φk are set to zero and we take a truncated normal

distribution as prior for the diagonal of the autoregressive parameter matrix Φk,

diag(Φk) ∼ N(mk,V k)I(|ϕki| < 1,∀i = 1, . . . , nk), (B.5)

for k ∈ {b, s, a}, where I(A) is one if condition A holds and zero otherwise, withmki = 0.9

and V k(i,i) = 0.22 and V k(i,j) = 0 for i, j = 1, . . . , nk, i ̸= j and k ∈ {b, s, a}. The prior

is truncated to ensure stationary parameters, as discussed in Section 2.2. We use the

notation of adding an underscore bar to prior hyperparameters. The mean and variance

reflect our belief in a persistent process for the parameters.

As prior for the break probability πk, we take a beta distribution,

πk ∼ Beta(ak, bk), (B.6)

for k ∈ {b, s, a}. The hyperparameters ak and bk reflect the investor’s views on the

presence of breaks (or lack thereof). For the intercepts and loadings, we set the

hyperparameters ak and bk such that the prior’s expectation is between a few breaks

(about one break every ten years) and many breaks (about one break per year) case. In

particular, we set ab = 1 and bb = 59, which implies an average duration of 60 months

between breaks, and implies a fairly weak prior. The hyperparameters in the beta prior

can be thought of as adding a + b observations: a ones and b zeros, or a breaks. If we

define the prior strength as (a+ b)/T , with T the sample size, we have a prior strength of

7.1%. Ravazzolo et al. (2008) and Groen et al. (2013) employ priors with prior strengths

of 7.4% and 5.2%.

For the variances and covariance’s break processes, we take as = bs = aa = ba =

1. It is uninformative in π, but at the same time puts most probability mass at the
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many breaks case, to favor stochastic volatility. Ignoring the stylized fact of volatility

clustering might bias the amount of time-variation in the loadings upwards. We have

also experimented with setting the hyperparameters to an intermediate break process

for all break processes, i.e. ak = 1 and bk = 59, for k ∈ {b, s, a}. This would be in

line with for example Pettenuzzo and Timmermann (2011), who estimate a change point

model with simultaneous breaks in the mean and the variance. The posterior estimates

are implausible in that they imply a (nearly) constant variance, but volatile loadings.

Time-variation is then mostly explained by the mean, because this has the largest impact

on the fit. This is likely due to the low signal-to-noise ratio in the data.

As prior for the break size matrix Qk we have an inverse Wishart distribution,

Qk ∼ IW(W kνk, νk), (B.7)

for k ∈ {b, s, a}, with νk degrees of freedom and

W b =
cb

E[πb]
var(β̂), (B.8)

W s =
cs

E[πs]
var(l̂ogσ2), (B.9)

wa =
ca

E[πa]
var(α̂), (B.10)

where ck is a scaling factor, E[πk] is the expected prior break probability, and var(β̂),

var(l̂ogσ2), and var(α̂) are the variance covariance matrices of the OLS estimators of β,

logσ2, and α on the first ten years of data as in Equations (B.1)–(B.3).

The model is known to be sensitive to the choice of ck, see e.g. Primiceri (2005) for a

discussion. We set ck = 0.001 for k ∈ {b, s, a}, but setting ck = 0.01 or ck = 0.0001 does

not affect the results qualitatively.

The presence of E[πk] in Equations (B.8)–(B.10) reflects the assumption that the

time-variation can be characterized either as a small number of large breaks or a large

number of small breaks. Following Koop et al. (2009), if the prior for the break probability

changes, the prior for the break size should change accordingly.
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We should be careful when choosing the degrees of freedom νk. To see why, consider

the case where π1 is close to 0. The full conditional posterior for the break size Qb is an

inverse Wishart distribution,

Qb| . . . ∼ IW

(
W bνb +

T∑
t=2

κbtηtη
′
t, νb +

T∑
t=2

κbt

)
, (B.11)

with κbt the break process and ηt the residuals from Equation (4) of the current draw, and

the notation “| . . .” denotes conditioning on the data and all other parameters. Because

πb is close to zero, it is likely that the number of breaks in the current draw is small or

even zero. Therefore,
∑T

t=2 κ1t ≈ 0 and the break size posterior is (approximately) equal

to the prior. This has two consequences. First, the prior degrees of freedom needs to be

sufficiently large to ensure that the (finite) break size variance exists, i.e. νk > nk+3, with

nk the matrix diagonal’s size. Actually, we need more degrees of freedom, because even

if the variance exists, for small degrees of freedom, the posterior break size variance still

explodes if the break probability is small and inference is complicated due to unrealistic

draws. Second, if the break probability πk is small, the break size prior is very informative,

even if the prior degrees of freedom νk is small. This is because if πb is small, the sum∑T
t=2 κbtηtη

′
t will be close to zero, and the mean of Qb is (almost) fully determined by

the prior’s location W bνb. Hence, one should be careful when interpreting the break size

results in that case. In a TVP model, the degrees of freedom is often set equal to the

minimum for the (finite) prior break size variance to exist. Instead of one, we add ten

degrees of freedom, such that νk = nk +3+10, to limit the prior’s informativeness, while

ensuring that the break size variance does not explode if the break probability is small.

As priors for the initial conditions of the state equations we take a normal distribution,

β1 ∼ N(0, νb var(β̂)), (B.12)

logσ2
1 ∼ N(0, νs var(l̂ogσ

2)), (B.13)

α1 ∼ N(0, νa var(α̂)), (B.14)

where var(β̂), var(l̂ogσ2), and var(α̂) are the variance covariance matrices of the OLS
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estimators of β, logσ2, and α on the first ten years of data as in Equations (B.1)–(B.3),

and νb, νs, and νa equal to the degrees of freedom in the prior of the break size in

Equations (B.8)–(B.10). This is quite informative, but consistent with that the initial

value is likely close to the OLS estimate of the ten preceding years.
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Appendix C Gibbs sampler

The Gibbs sampler is closely related to the one used by Koop et al. (2009). The difference

is the addition of autoregressive parameters and long run means. The sampler is based

on the algorithm for time-varying parameter VAR (TVP-VAR) models, see Primiceri

(2005), with the difference that we additionally need to draw the break processes κt =

(κbt, κst, κat)
′ and the break probabilities π = (πb, πs, πa)

′.

The Gibbs sampler is split into four steps, which is iterated over until we have a

sufficient number of posterior draws,

1. Draw the coefficients B = {βt}Tt=1 and their break process κb = (κb,1, . . . , κb,T ).

2. Draw the volatilities S = {logσ2
t }Tt=1 and their break process κs = (κs,1, . . . , κs,T ).

3. Draw the covariance terms α = (α1, . . . , αT ) and its break process κa =

(κa,1, . . . , κa,T ).

4. Draw the parameters in the state equations θ = (Φ,Q,π).

Each of the first three steps consists of writing (parts of) the VAR model into state

space form such that we can draw the state variables in two steps,

a. Draw the break process κk from the full conditional posterior, with the state

variables integrated out, using the algorithm of Gerlach et al. (2000).

b. Draw the state variables, i.e. the long-run mean and the time-varying part, using

the simulation smoother of Durbin and Koopman (2002).

C.1 Step 1: Drawing the coefficients

Define yt = (rt, zt)
′ and xt = (1, zt−1)

′, the left hand side and right hand side variables,

and β̃t = βt−µb, the coefficients’ deviation from the mean at time t. Then, we can write
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the state space model,

yt = (In ⊗ xt)(µb + β̃t) + εt, (C.1)

β̃t = f(κbt,Φb)β̃t−1 + κbtηt, (C.2)

µb = µb, (C.3)

where εt ∼ N(0,Ωt) and ηt ∼ N(0,Qb) are independent, ⊗ is the Kronecker product and

In the n× n identity matrix, with n = 2 the number of left hand side variables.

Now, we can first apply the algorithm of Gerlach et al. (2000) to efficiently draw

the break process κb from the full conditional posterior where the state variables have

been integrated out. Then, conditional on the break process κb, we use the simulation

smoother of Durbin and Koopman (2002) to draw the state variables β̃t and µb.

C.2 Step 2: Drawing the volatilities

Define

ε∗t = Atε̂t = At

(
yt − (In ⊗ xt)βt

)
=

 1 0

αt 1


ε̂1t

ε̂2t

 =

 ε̂1t

αtε̂1t + ε̂2t

 . (C.4)

Next, transform ε∗t into ε∗∗t = log
(
(ε∗t )

2+ c̄
)
, with c̄ = 0.0001 the off-set constant to avoid

numerical issues.Further, define l̃ogσ2
t = logσ2

t − µs, the volatilities’ deviation from the

mean at time t. Then, we can write the state space model,

ε∗∗t = µs + l̃ogσ2
t + et, (C.5)

l̃ogσ2
t = f(κst,Φs) ˜logσ2

t−1 + κstζt, (C.6)

µs = µs, (C.7)

where ζt ∼ N(0,Qs) independent from et.

The state space model is non-Gaussian, because the disturbances et follow a χ2

distribution with one degree of freedom. Carter and Kohn (1997) and Kim et al. (1998)
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show that it can be accurately approximated using a mixture of normals. We use the

mixture of seven normals used by Kim et al. (1998), and can then consecutively draw the

break process κs, the time-varying part of l̃ogσ2 and the long-run mean µs.

Stroud et al. (2011) suggest a Metropolis-Hastings step to correct for the

approximation error of using a mixture of normals. Kim et al. (1998) show that the

approximation error is negligible, though, and Del Negro and Primiceri (2015) confirm

this with a TVP-VAR model. Therefore, we also exclude a Metropolis-Hastings step.

C.3 Step 3: Drawing the covariance term

Define ε̂t = yt − (In ⊗xt)βt, and Atε̂t = ut, with ut ∼ N(0,ΣtΣ
′
t), then we can use the

lower triangular structure of At to rewrite ε̂t as

ε̂t = Ctαt + ut =

 0

−ε̂1t

αt + ut. (C.8)

Further, define α̃t = αt − µa the covariance term’s deviation from the long run mean.

Then, we can write the state space model,

ε̂2t = −ε̂1t(µa + α̃t) + u2t, (C.9)

α̃t = f(κat, ϕa)α̃t−1 + κatξt, (C.10)

µa = µa, (C.11)

where u2t ∼ N(0, σ2
2t) and ξt ∼ N(0, q2a) are independent.

We again apply steps (a) and (b) to draw the break process κa, followed by the

time-varying part of the covariance term α̃ = (α̃1, . . . , α̃T ) and the long-run mean µa.
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C.4 Step 4: Drawing the state equation parameters

The full conditional posterior distribution for the diagonal elements of the autoregressive

parameter Φk is a truncated normal distribution,

diag(Φk)| . . . ∼ N(mk,V k)I(|ϕki| < 1,∀i = 1, . . . , nk), (C.12)

where I(A) is one if A holds and zero otherwise, nk the number of diagonal elements in

Φk, with variance

V b =

(
V −1

b +
T∑
t=2

κbt(β̃
′
t−1Q

−1
b β̃t−1)

)−1

, (C.13)

V s =

(
V −1

s +
T∑
t=2

κst

(
( ˜logσ2

t−1)
′Q−1

s
˜logσ2

t−1

))−1

, (C.14)

v2a =

(
v−2
a + q−2

a

T∑
t=2

κatα̃
2
t−1

)−1

, (C.15)

and mean

mb = V b

(
V −1

b mb +
T∑
t=2

κbt(β̃
′
t−1Q

−1
b β̃t)

)
, (C.16)

ms = V s

(
V −1

s ms +
T∑
t=2

κst

(
( ˜logσ2

t−1)
′Q−1

s l̃ogσ2
t

))
, (C.17)

ma = v2a

(
v−2
a ma + q−2

a

T∑
t=2

κat(α̃t−1α̃t)

)
, (C.18)

and the off-diagonal elements of Φk are zero.

We draw from the truncated normal distribution using an accept-reject algorithm with

a normal distribution with the same mean and variance to reduce computational costs.

If after a 1,000 tries no draw has been accepted, we draw directly from the truncated

normal distribution.

The full conditional posterior distribution for the break probability πk is a beta
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distribution,

πk| . . . ∼ Beta(ak, bk), (C.19)

where

ak = ak +
T∑
t=2

κkt, (C.20)

bk = bk +
T∑
t=2

(1− κkt), (C.21)

for k ∈ {b, s, a}.

The full conditional posterior distribution of the break size Qk is an inverse Wishart

distribution,

Qk| . . . ∼ IW
(
W k, νk

)
, (C.22)

with location parameter

W b = W bνb +
T∑
t=2

κbt

(
β̃t − f(κbt,Φb)β̃t−1

)(
β̃t − f(κbt,Φb)β̃t−1

)′
, (C.23)

W s = W sνs +
T∑
t=2

κst

(
l̃ogσ2

t − f(κst,Φs) ˜logσ2
t−1

)(
l̃ogσ2

t − f(κst,Φs) ˜logσ2
t−1

)′

,

(C.24)

wa = waνa +
T∑
t=2

κat

(
α̃t − f(κat, ϕa)α̃t−1

)2
, (C.25)

and degrees of freedom

νk = νk +
T∑
t=2

κkt, (C.26)

for k ∈ {b, s, a}.
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Appendix D MCMC convergence analysis

We follow the convergence analysis by Groen et al. (2013) in their appendix. That is, we

compute inefficiency factors and analyze the convergence of the MCMC chain using the

Geweke (1992) test, for our baseline model, the MI model with E[πb] = 1/60.

The inefficiency factors in table Table D.1 are calculated as IF = 1+2
∑∞

i=1 ρi, with ρi

the i-th order autocorrelation of the posterior draws of a parameter. The autocorrelation

is computed using the Newey and West (1987) estimator with a Bartlett kernel and 4%

bandwidth. A guideline is that you need approximately 100 times the inefficiency factor

such that at most 1% of the variation is due to the data, see Kim et al. (1998) and Groen

et al. (2013) (appendix). Most parameters are reasonably converged for 10,000 draws,

the number of retained draws we use. The results do suggest that we require extra draws

to get a more accurate estimate of the parameter in the covariance term’s state equation.

The inefficiency factor for the long run mean is small, so it only concerns the parameters

describing the dynamics of αt.

The Geweke (1992) tests whether the first 20% and the last 40% of the draws have

an equal mean. The rejection rates in table Table D.2 show that in general the MCMC

chain is converged. However, the null hypothesis is strongly rejected for the parameters

governing the covariance’s break process. We experimented with the burn-in, and test

results are mostly due to sample selection rather than a lack of convergence. Due to the

high autocorrelation, it depends on the selected subsamples whether the null of equal

means is rejected.

Combining the inefficiency factors and Geweke (1992) test results, only the parameters

in the covariance term’s state equation are not well identified. It is not surprising, because

there is little instability found in this the covariance term. We are not too concerned about

the effect on the overall convergence, given that the test results for the other parameters

are fine. Concluding, we find that the overall convergence of the sampler for the current

number of draws and burn-in is satisfactory.
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Table D.1: Inefficiency factors

Parameter Number Median Mean Min Max 5% quantile 95% quantile

Panel A: Intercepts and loadings

β̃ 3,360 15.44 16.92 2.60 49.39 5.06 37.62
µb 4 52.25 52.78 48.18 58.46
κb 840 19.00 20.72 8.01 65.09 16.05 30.33
πb 1 64.06 64.06 64.06 64.06
Φb 4 95.07 101.69 51.97 164.66
Qb 16 53.85 53.63 51.22 55.46

Panel B: Variances

l̃ogσ2 1,680 5.23 9.89 1.61 83.15 2.69 27.90
µs 2 16.06 16.06 6.66 25.46
κs 840 1.23 1.17 0.52 5.24 0.75 1.84
πs 1 20.49 20.49 20.49 20.49
Φs 2 96.47 96.47 28.74 164.19
Qs 4 61.21 62.62 42.29 85.77

Panel C: Covariance term

α 840 1.35 1.44 0.72 6.04 0.92 2.24
µa 1 6.12 6.12 6.12 6.12
κa 840 81.85 81.85 74.23 88.31 77.79 85.93
πa 1 289.44 289.44 289.44 289.44
ϕa 1 95.08 95.08 95.08 95.08
qa 1 203.38 203.38 203.38 203.38
log p(Y |κb) 1 4.40 4.40 4.40 4.40

This table presents a summary of the inefficiency factors for the parameters of the mixture innovation
model, where the break probability is unknown, and the hyperparameters are set as ab = 1,bb = 59, and
as = bs = aa = ba = 1. The inefficiency factors are estimated using Newey and West (1987) estimator.
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Table D.2: Geweke test results

Parameter Number 10% rejection rate 5% rejection rate 1% rejection rate

Panel A: Intercept and loadings

β̃ 3,360 0.001 0.000 0.000
µb 4 0.000 0.000 0.000
κb 840 0.004 0.000 0.000
πb 1 0.000 0.000 0.000
Φb 4 0.000 0.000 0.000
Qb 16 0.000 0.000 0.000

Panel B: Variances

l̃ogσ2 1,680 0.080 0.039 0.007
µs 2 0.000 0.000 0.000
κs 840 0.092 0.061 0.010
πs 1 0.000 0.000 0.000
Φs 2 0.000 0.000 0.000
Qs 4 0.000 0.000 0.000

Panel C: Covariance term

α 840 0.096 0.056 0.018
µa 1 0.000 0.000 0.000
κa 840 1.000 1.000 1.000
πa 1 1.000 1.000 1.000
ϕa 1 1.000 1.000 1.000
qa 1 1.000 1.000 1.000
log p(Y |κb) 1 0.000 0.000 0.000

This table presents the rejection rates of the Geweke (1992) test, testing whether the first 20% and
the last 40% of the draws have an equal mean, for the parameters of the mixture innovation model,
where the break probability is unknown, and the hyperparameters are set as ab = 1,bb = 59, and
as = bs = aa = ba = 1.
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Appendix E Data

Table E.1: Summary statistics

Excess market return Dividend price ratio

Mean 0.006 −3.514
Median 0.010 −3.479
Standard deviation 0.042 0.443
Skewness −0.655 −0.112
Kurtosis 5.207 2.215
AR(1) 0.042 0.995
AR(12) 0.043 0.932
ARCH test (p-value) 0.000 0.000

The table presents summary statistics of the excess log return and log dividend price ratio for the period
January 1946 – December 2021. AR(x) is the x-th order autocorrelation. Engle’s (1982) ARCH test is
based on residuals from a static VAR(1) model, estimated using maximum likelihood.

Figure E.1: Time series of data

(a) Excess returns
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(b) Dividend price ratio
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The figures present the monthly time series of the excess log returns (a) and the log dividend price ratio
(b) for the period January 1936 – December 2021, where the shaded area (January 1936 – December
1945) is used for prior calibration.
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